Recurrent Neural Network based Translation Quality Estimation

نویسندگان

  • Hyun Kim
  • Jong-Hyeok Lee
چکیده

This paper describes the recurrent neural network based model for translation quality estimation. Recurrent neural network based quality estimation model consists of two parts. The first part using two bidirectional recurrent neural networks generates the quality information about whether each word in translation is properly translated. The second part using another recurrent neural network predicts the final quality of translation. We apply this model to sentence, word and phrase level of WMT16 Quality Estimation Shared Task. Our results achieve the excellent performance especially in sentence and phraselevel QE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Machine Translation Quality Estimation with Neural Network Features

Machine translation quality estimation is a challenging task in the WMT evaluation campaign. Feature extraction plays an important role in automatic quality estimation, and in this paper, we propose neural network features, including embedding features and cross-entropy features of source sentences and machine translations, to improve machine translation quality estimation. The sentence embeddi...

متن کامل

Translation Quality Estimation using Recurrent Neural Network

This paper describes our submission to the shared task on word/phrase level Quality Estimation (QE) in the First Conference on Statistical Machine Translation (WMT16). The objective of the shared task was to predict if the given word/phrase is a correct/incorrect (OK/BAD) translation in the given sentence. In this paper, we propose a novel approach for word level Quality Estimation using Recurr...

متن کامل

SimpleNets: Quality Estimation with Resource-Light Neural Networks

We introduce SimpleNets: a resource-light solution to the sentence-level Quality Estimation task of WMT16 that combines Recurrent Neural Networks, word embedding models, and the principle of compositionality. The SimpleNets systems explore the idea that the quality of a translation can be derived from the quality of its n-grams. This approach has been successfully employed in Text Simplificatio...

متن کامل

Water Quality Index Estimation Model for Aquaculture System Using Artificial Neural Network

Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality index (WQI) in aquaculture. There exist different approaches for the estimation of the quality...

متن کامل

Minimum Translation Modeling with Recurrent Neural Networks

We introduce recurrent neural networkbased Minimum Translation Unit (MTU) models which make predictions based on an unbounded history of previous bilingual contexts. Traditional back-off n-gram models suffer under the sparse nature of MTUs which makes estimation of highorder sequence models challenging. We tackle the sparsity problem by modeling MTUs both as bags-of-words and as a sequence of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016